Battling ‘superbugs’: Re-engineering existing drugs to beat microbial resistance

A classic drug supercharged by College of Queensland researchers has become a brand new antibiotic that may destroy a few of the world’s most harmful superbugs.

The supercharge technique , brought by Dr Mark Blaskovich and Professor Matt Cooper from UQ’s Institute for Molecular Bioscience (IMB), potentially could revitalise other antibiotics.

Staphylococcus aureus Image/CDCStaphylococcus aureus
Image/CDC

Antibiotic-resistant bacteria – superbugs – cause 700,000 deaths worldwide every year, along with a United kingdom government review has predicted this might rise to ten million by 2050.

Dr Blaskovich stated that old drug, vancomycin, was still being broadly accustomed to treat very harmful microbial infections, but bacteria were becoming more and more resistant against it.

“The rise of vancomycin-resistant bacteria, and the amount of patients dying from resistant infections that can’t be effectively treated, stimulated we to check out methods to revitalise old antibiotics,” Dr Blaskovich stated.

$10 Off + Free Delivery on Cat DNA Health Screen and Existence Plan! Use code: CATH18 at HomeDNA.com!

“We did this by modifying vancomycin’s membrane-binding qualities to selectively bind to microbial membranes instead of individuals of human cells, creating a number of supercharged vancomycin derivatives known as vancapticins.”

The rebooted vancomycin can treat methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE).

Professor Cooper stated pharmaceutical companies had departed the antibiotic discovery field because new antibiotics were difficult to get and weren’t as lucrative as cholesterol-lowering medications or cancer treatments.

“Hence many scientists are re-engineering existing drugs to beat microbial resistance, instead of trying to find new drugs,” he stated.

“Drug development is generally centered on improving binding to some biological target, and barely concentrates on assessing membrane-binding qualities.

“This approach labored using the vancapticins, and also the question now’s whether you can use it to revitalise other antibiotics which have lost effectiveness against resistant bacteria.

“Given the alarming rise of multi-drug resistant bacteria and the amount of time it requires to build up a brand new antibiotic, we have to take a look at any solution that may fix the antibiotic drug discovery pipeline now,” Professor Cooper stated.

Related: